Section 5.5
 The Fundamental Theorem of Calculus II

(1) The Cumulative Area Function
(2) The Fundamental Theorem of Calculus

The Cumulative Area Function

Let f be a function and let a be a number. The cumulative area function

$$
A_{f}(x)=\int_{a}^{x} f(t) d t
$$

is the net area under the curve f on the interval $[a, x]$. (Note that this area depends on x.)

Example: Let $f(t)=t$ and $a=0$. Then

$$
A_{f}(x)=\int_{0}^{x} t d t=x^{2} / 2
$$

$=$ area of a triangle with base x and height x.

Remark on notation: $A_{f}(x)$ is a function of x, not of t. The letter t is just a "dummy variable" that has no meaning outside the integral.

The Cumulative Area Function

Let f be a function and let a be a number. The cumulative area function

$$
A_{f}(x)=\int_{a}^{x} f(t) d t
$$

is the net area under the curve f on the interval $[a, x]$.

The Fundamental Theorem of Calculus, Part II

Graph of $f(t) \frac{d}{d x} A_{f}(x)$	Area function $A_{f}(x)=\int_{a}^{x} f(t) d t$
Above the x-axis	Increasing
Below the x-axis	Decreasing
Zero	Local extremum
Increasing	Concave up
Decreasing	Concave down

The Fundamental Theorem of Calculus II (FTC-2)

Suppose f is continuous on the interval $[a, b]$. Then, for all x in $[a, b]$:

$$
\frac{d}{d x}\left(A_{f}(x)\right)=\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x) .
$$

The Idea Behind FTC-2

As Δx gets smaller and smaller, the average height of the red strip approaches $f(x)$. Therefore:

$$
f(x)=\lim _{\Delta x \rightarrow 0} \frac{A_{f}(x+\Delta x)-A_{f}(x)}{\Delta x}=\frac{d}{d x} A_{f}(x)=\frac{d}{d x} \int_{0}^{x} f(t) d t
$$

The Fundamental Theorem of Calculus II (FTC-2)

Suppose f is continuous on the interval $[a, b]$. Then, for all x in $[a, b]$:

$$
\frac{d}{d x}\left(A_{f}(x)\right)=\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

Example 1a: $\frac{d}{d x}\left(\int_{x}^{a} f(t) d t\right)$

Example 1b: $\frac{d}{d x} \int_{a}^{3 x^{2}} f(t) d t$

The Fundamental Theorem of Calculus

Let $f(x)$ be continuous on $[a, b]$ and let F be an antiderivative of f. Let $A_{f}(x)=\int_{a}^{x} f(t) d t$. Then:
(FTC Part I) $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
(FTC Part II) $\frac{d}{d x}\left(A_{f}(x)\right)=\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)$.

The Fundamental Theorem of Calculus shows that integration and differentiation are inverse operations.

- If you start with a continuous function f and form the integral $\int_{a}^{x} f(t) d t$, then you get back the original function by differentiating:

$$
\begin{aligned}
f(x) & \longrightarrow \text { Integrate } \longmapsto \quad \int_{a}^{x} f(t) d t \\
& \mapsto \text { Differentiate } \longmapsto \quad \frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
\end{aligned}
$$

- If you differentiate a function f and then integrate it, then you get back the original function, up to a constant:

$$
\begin{aligned}
f(x) & \longmapsto \text { Differentiate } \longmapsto \frac{d}{d x}(f(x))=f^{\prime}(x) \\
& \mapsto \text { Integrate } \longmapsto \quad \int_{a}^{x} f^{\prime}(t) d t=f(x)-f(a)
\end{aligned}
$$

